Toward Sustainable Radioactive Waste Control: Successes and Failures From 1992 to 2002
I. Introduction
A. What Does Sustainability Mean for Radioactive Waste?
Using a primitive nuclear reactor, named "Chicago Pile # 1," Enrico Fermi's team achieved a controlled chain reaction inside a squash court under the spectator stands of Stagg Field at the University of Chicago on December 2, 1942.1 In 1992—a half century after the first controlled nuclear reaction [32 ELR 11060] on earth—the Rio Summit found no consensus on the meaning of "sustainability" in nuclear waste control. Ten years later, our technical understanding and regulatory efforts have improved, even as the global situation raises new concerns. But, we are still far from a consensus on what a sustainable approach to nuclear waste might mean.
Sustainability in nuclear waste2 may, in fact, be an oxymoron. Certainly, nuclear power is not "natural" to a greater degree than other human endeavors. Although uranium exists naturally in the earth's crust, the fissioning of uranium in reactors produces an almost wholly man-made element—plutonium—that does not otherwise exist on earth,3 and can produce a variety of unique environmental, health, and security problems. On the other hand, nuclear technology provides one-fifth of U.S. electrical power and a variety of medical and scientific benefits with less evident immediate and direct health impacts than other energy sources, such as coal. If we look for sustainability in the nuclear enterprise, not in its "naturalness," but in the possibility of consequences that are tolerable for the long run, then nuclear power might compare well with other major energy sources. A larger problem arises, however, from certain nuclear technologies that hold the threat of unparalleled destruction and calamity from nuclear explosions. In this way nuclear power—if it involves reprocessing and recovery of fissile material, e.g., plutonium, may present fundamentally different risks of a greater magnitude than other energy alternatives. If reprocessing and recovery of fissile material can be avoided, then the risks are more comparable to other human endeavors that result in long-lived wastes.