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Virtually anyone with an interest in environmental pol-
icy is familiar with the allegations that traditional

methods of statistical inference are biased against preventa-
tive environmental standards.1 They surely also know of the
Precautionary Principle as the broad theory often cited by
environmentalists to support this critique and to argue that
regulated industries should bear the burden of proving that
their products and activities are safe.2 This collision be-
tween scientific method and environmental principle has
had great salience in environmental law and policy for
many years. However, the debate loses much of its force
and momentum because it is premised on a relatively su-
perficial understanding of the underlying statistical meth-
ods. This Article seeks to move beyond the heuristics of the
current discourse.

The environmental economist Talbot Page was one of
the first people to identify what he considered to be a fun-
damental mismatch between traditional, i.e., frequentist
statistical methods and the types of risks at issue in environ-
mental policymaking3:

The cost of a false negative [Type I error]—deciding that
the benign hypothesis is true when it is not—is much
higher than the cost of a false positive [Type II er-
ror]—deciding that the catastrophic hypothesis is true

when it is not. In the former case, the catastrophic results
more than offset the modest benefits of erroneously ac-
cepting the benign hypothesis. In the latter case, the costs
are equal only to the loss of modest benefits incurred by
rejecting the benign hypothesis.4

The incongruities Page identified were twofold. First,
frequentist statistical methods minimize the wrong type of
error by focusing on Type I errors (the risk of overregu-
lating) rather than Type II errors (the risk of underregu-
lating).5 Second, frequentist statistical methods improperly
place the scientific burden of proof on proponents of envi-
ronmental regulation by starting with a baseline assumption
that no harm exists.6 These apparent flaws are central to en-
vironmentalists’ often skeptical view of statistics and their
efforts to reform methods of scientific inference for pur-
poses of environmental standard setting. Page’s critique
also raises important questions about how statistics is used
by scientists and the relationship between standards of sta-
tistical significance and legal burdens of persuasion.

This Article examines the role of frequentist methods in
environmental policymaking and describes the interplay be-
tween scientific assessments and frequentist statistics. Part I
provides a brief introduction to frequentist methods. Part II
addresses the debate over burdens of proof and minimizing
statistical error rates in environmental law, and uses several
rationales for the Precautionary Principle to evaluate com-
mon misconceptions about the use of frequentist methods in
environmental science. This Article demonstrates that sta-
tistical tests are more flexible than most people appreciate
and proposes a solution to environmentalists’ concerns,
“equivalence testing,” that reverses the benign-until-
proven-guilty presumption of traditional frequentist meth-
ods.7 It concludes by identifying the respective limits of sta-
tistical inference and the Precautionary Principle in envi-
ronmental decisionmaking.

I. Frequentist Methods of Statistical Inference

Statistics is often mistakenly viewed as a collection of re-
lated techniques that lack any substantive content.8

The author is an Associate Professor, James E. Rogers College of Law,
University of Arizona. B.A., Reed College, 1988; Ph.D., Stanford Uni-
versity, 1993; J.D., Stanford Law School, 1996. The arguments dis-
cussed in this Article are drawn from a larger piece: David E. Adelman,
Scientific Activism and Restraint: The Interplay of Statistics, Judgment,
and Procedure in Environmental Law, 79 Notre Dame L. Rev. 101
(2003). This project benefitted from the financial support of the Golden
Family Foundation.

1. See, e.g., Daniel F. Luecke, Environmental Restoration: Challenges
for the New Millennium: An Environmental Perspective on Large
Ecosystem Restoration Processes and the Role of the Market, Litiga-
tion, and Regulation, 42 Ariz. L. Rev. 395, 406 (2000); Frank B.
Cross, Paradoxical Perils of the Precautionary Principle, Wash. &

Lee L. Rev. 851, 852-53 (1996); Sidney A. Shapiro, Keeping the
Baby and Throwing Out the Bathwater: Justice Breyer’s Critique of
Regulation, 8 Admin. L.J. 721, 732 (1995); Reed F. Noss, Some
Principles of Conservation Biology, as They Apply to Environmental
Law, 69 Chi.-Kent. L. Rev. 893, 896-97 (1994); Donald T.
Hornstein, Reclaiming Environmental Law: A Normative Critique of
Comparative Risk Analysis, 92 Colum. L. Rev. 562, 641 (1992).

2. See infra Part II (describing the Precautionary Principle).

3. Frequentist methods are what most lay people associate with statis-
tics (a second branch of statistics, Bayesian statistics, also exists).
Frequentist statistics is based on methods for controlling and mini-
mizing error rates in statistical models. Ian Hacking, An Intro-

duction to Probability and Inductive Logic 127-28, 172, 190
(2001); M.S. Bartlett, Probability and Chance in the Theory of Sta-
tistics, 141 Proc. Royal Soc’y London 518, 528 (1933). As such,
frequentist methods employ objective standards of “statistical sig-
nificance” to ensure that statistical methods stringently test scientific
hypotheses; they do not represent a direct estimation of the likeli-
hood that a hypothesis is true.

4. Talbot Page, A Generic View of Toxic Chemicals and Similar Risks,
7 Ecology L.Q. 207, 219-20, 230-39 (1978).

5. Id. at 230-33.

6. Id.

7. See Graham B. McBride, Equivalence Tests Can Enhance Environ-
mental Science Management, 41 Australia & New Zealand J.

Statistics 19, 20 (1999); Roger L. Berger & Jason C. Hsu, Bio-
equivalence Trials, Intersection—Union Tests and Equivalence
Confidence Sets, 11 Statistical Sci. 283, 283-84 (1996).

8. Statistics is no more a collection of descriptive techniques void of
theoretical content than legal procedures are independent of substan-
tive objectives. Yet, as early as the Progressive era, statisticians

ELR
NEWS&ANALYSIS

2-2004 34 ELR 10131

Copyright © 2004 Environmental Law Institute®, Washington, DC. reprinted with permission from ELR®, http://www.eli.org, 1-800-433-5120.

http://www.eli.org


Frequentist statistics, like all statistical methods, consists of
several mathematical theorems and models of scientific in-
ference that are premised on substantive beliefs about na-
ture.9 It also functions in two distinct modes. First,
frequentist methods encompass a collection of mathemati-
cal techniques, e.g., means, medians, probability functions,
that are used to analyze observed propensities in a system,
such as the likelihood of rolling double sixes with a set of
dice.10 In this mode, statistics is used to evaluate the results
of multiple observations, e.g., calculating the mean concen-
tration of a pollutant in a river from multiple test sites. Sec-
ond, frequentist methods are used to make probability esti-
mates for scientific inference, which are most commonly as-
sociated with traditional methods for determining whether
an experimental result is statistically significant.11 In this
second mode, frequentist methods are used to determine
whether or not certain data support a particular scientific hy-
pothesis, such as a theory about the health risks from spe-
cific airborne pollutants; they do not function as a direct
summary of the trends observed in the data, as in a median
value or average.

Frequentist methods of scientific inference are premised
on defining probability objectively as the “long-run fre-

quencies” in a population.12 The frequency, for example,
that samples from a body of water exceed a regulatory limit
or the incidence rate of a genetic defect in a population are
representative of such properties.13 Frequentist methods
seek to discern such long-run frequencies by testing hypoth-
eses about a system under investigation. Frequentist hy-
pothesis testing typically proceeds as follows: A scientist
starts with a “null hypothesis” that, for example, global
warming will not occur and then conducts an experiment to
test whether this null hypothesis is consistent with the col-
lected data. If the experimental data are inconsistent with the
null hypothesis, the result is characterized as “statistically
significant.” Importantly, frequentist methods do not quan-
tify directly the likelihood of global warming; they function
instead as a means for falsifying hypotheses. This approach
is valuable because the more rigorous the statistical testing,
the greater the confidence a scientist using frequentist meth-
ods will have in a hypothesis if it withstands such tests.

Ronald Fisher was instrumental in developing the formal
methods for frequentist statistical inference and experimen-
tal design. According to Fisher, “science was a matter of
random statistical aggregates, and the data representative of
populations.”14 Fisher’s view of science was deeply in-
formed by his work in Mendelian genetics, which scientists
have aptly characterized as nature’s “perfect gambling ma-
chine.”15 Population genetics became the central metaphor
of Fisher’s work: just as a human population contains many
genetic subpopulations, so too is the universe made up of in-
numerable populations or classes of things, which experi-
ments randomly “sample” to determine their properties.16

For Fisher, statistical inference involved obtaining a statisti-
cal sample of a population, such as sediment sampling
points in a river, from which the fixed, i.e., objective, fre-
quencies of the population were inferred.17 Fisher’s test for
statistical significance provides a measure of the fidelity
between an experimental sample statistic, such as a mean
sediment contaminant level, and the hypothesized parame-
ter for the real-world population, here the mean sediment
contaminant level of every point in the river.18 The great
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strength of Fisher’s work was that his statistical tests were
both simple to apply and valid for even relatively small ex-
perimental samples.

Frequentist methods adopt a world view in which abstract
populations are the building blocks of the universe. Under
this framework, experimental science is simply a process of
obtaining “random samples from a population of fixed dis-
tribution,” much as one might take multiple samples of a
gumball machine to estimate the relative abundance of the
different flavors it contains.19 As Fisher’s work suggests,
this model of reality was generalized from his experimental
studies in Mendelian genetics—not proven.20 This point is
crucial to appreciating the relationship between probability
and empirical methods in frequentist statistics. Probability
and scientific judgment are, by definition, distinct for
frequentists because probability is treated as an objective
property that is used to support scientific judgments, as op-
posed to treating probability as a direct measure of the confi-
dence a scientist has in a hypothesis.

II. Frequentist Methods and the Precautionary
Principle

Environmentalists have objected to standard methods of sci-
entific inference for decades. A central source of this con-
cern is the world view on which frequentist methods of sta-
tistical inference are premised. Environmentalists find this
view problematic for two central reasons. First, statistical
inference becomes dependent on a dubious “bingo game”
model of the universe, under which science is practiced by
experimentally isolating and randomly sampling abstract
populations.21 For environmentalists, this model appears to
conflict with more holistic ecological models, as it is pre-
mised on a disconnected and atomized world ruled by
chance. Second, and most importantly for this Article,
frequentist methods almost invariably presume that envi-
ronmental impacts are benign until proven guilty.22 In this
section, I will examine critiques of frequentist methods that
are based on the Precautionary Principle, which draws on
and is intended to alter traditional methods of scientific in-
ference.23 The tensions between frequentist statistical meth-
ods and the Precautionary Principle will be evaluated
(largely agnostically), and a novel approach to frequentist
statistical testing will be proposed that addresses environ-

mentalists’ concerns about systemic biases in traditional
methods of scientific inference.

The Precautionary Principle embodies the old adage
“better safe than sorry” by placing protection of public
health and the environment above other interests even when
evidence of harm is not proven definitively.24 The Precau-
tionary Principle is premised on the belief that “[i]f there is a
potential for harm from an activity and if there is uncertainty
about the magnitude of impacts or causality, then anticipa-
tory action should be taken to avoid harm.”25 The Rio Decla-
ration on Environment and Development describes the
“precautionary approach” as follows:

In order to protect the environment, the precautionary
approach shall be widely applied by States according to
their capabilities. Where there are threats of serious or ir-
reversible damage, lack of full scientific certainty shall
not be used as a reason for postponing cost-effective
measures to prevent environmental degradation.26

In at least some of its myriad formulations, the Precaution-
ary Principle proposes a balancing test of sorts, under which
the potential level of harm, degree of scientific uncertainty,
and likely alternatives for a product or action are assessed to
determine the appropriate regulatory strategy.27 If, for ex-
ample, the potential level of harm from a product is great,
the scientific uncertainty significant, and numerous low-
cost alternatives available, the Precautionary Principle
would favor a ban on the product. Conversely, if the level
of harm is low, the scientific uncertainty minimal, and
the alternatives limited and very expensive, the Precau-
tionary Principle would favor less stringent regulation.
More complicated balancing is required when cases fall be-
tween these extremes.

The Precautionary Principle has obvious ties to
frequentist methods. Proponents of the Precautionary Prin-
ciple justify it on the grounds that the uncertainty of risk
ought to be borne by the regulated industry, rather than the
“potential victims.”28 This rationale is often expressed in
terms borrowed from frequentist probability theory:

When a regulator makes a decision under conditions of
uncertainty, there are two possible types of error. The
regulator can overregulate a risk that turns out to be in-
significant or the regulator can underregulate a risk that
turns out to be significant. If the regulator erroneously
underregulates, the burden of this mistake falls on those
individuals who are injured or killed, and their families.
If a regulator erroneously overregulates, the burden of

NEWS & ANALYSIS
Copyright © 2004 Environmental Law Institute®, Washington, DC. reprinted with permission from ELR®, http://www.eli.org, 1-800-433-5120.

2-2004 34 ELR 10133

19. Id. at 37.

20. Id. at 107.

21. Collins, supra note 9, at 336; Howie, supra note 14, at 74. Recall,
the guiding metaphor of frequentist statistics is Mendelian genetics,
under which long-run frequencies are determined by random selec-
tions of specific traits, as opposed to specific relationships or causes,
i.e., biological, chemical, or physical. See supra Part I.

22. Carl Cranor, Asymmetric Information, The Precautionary Principle,
and Burdens of Proof, in Protecting Public Health and the

Environment: Implementing the Precautionary Principle 79
(Carolyn Raffensperger & Joel Tickner eds., 1999) [hereinafter
Protecting Public Health and the Environment]; Katherine
Barrett & Carolyn Raffensperger, Precautionary Science, in Pro-

tecting Public Health and the Environment, supra, at 111-
12; David H. Kaye, Is Proof of Statistical Significance Relevant?, 61
Wash. L. Rev. 1333, 1345 (1986).

23. Andrew Jordan & Timothy O’Riordan, The Precautionary Principle
in Contemporary Environmental Policy and Politics, in Protecting

Public Health and the Environment, supra note 22, at 17 (the
Precautionary Principle “challenges the established scientific
method”); Barrett & Raffensperger, supra note 22, at 108-09, 115.

24. Cross, supra note 1, at 851.

25. Protecting Public Health and the Environment, supra note
22, at 1.

26. The Rio Declaration on Environment and Development, U.N. Con-
ference on Environment and Development, U.N. Doc.
A/CONF.151/5 Rev. 1 (1992), reprinted in 31 I.L.M. 874 (1992).
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this mistake falls on the regulated industry[,] which will
pay for regulation that is not needed. This result, how-
ever, is fairer than setting the burden of uncertainty about
a risk on potential victims.29

As this account suggests, the Precautionary Principle incor-
porates basic rules about minimizing error rates from
frequentist inference methods.30 In this context, erroneous
overregulation and underregulation are variants of statisti-
cal significance, i.e., Type I error or false positives, and
power, i.e., Type II error or false negatives.31 Environmen-
talists have used the frequentist framework to argue that
Type II errors, meaning the risks from underregulation,
should be accorded much greater weight than Type I errors
in standard statistical tests used in environmental regulatory
science.32 Of course, one could, and many people do, dis-
agree with this approach as a general rule, as instances will
exist in which the net societal harm from overregulation is
greater than underregulation.33 For the purposes of this dis-
cussion, disagreements over this point are unimportant; one
need only accept that the risks from underregulation some-
times will clearly outweigh those from overregulation.

The conventional levels for statistical significance are an
obvious target because they are arbitrarily set.34 If one ac-
cepts the Precautionary Principle, raising Type I errors and
lowering Type II errors in the regulatory context is thus per-
fectly acceptable to account for asymmetries between po-
tential victims and regulated industries.35 However, while
this rationale is valid, it often ignores the indirect nature of
frequentist concepts and overemphasizes their role in sci-
entific determinations. To begin with, statistical signifi-
cance is a measure of the reliability of a statistical test; it is
not a direct standard of persuasion, like beyond a reason-
able doubt.36 Thus, the direct result from raising the signif-
icance level of a statistical test is that the threshold for re-

jecting a test hypothesis is lowered.37 This change is only
indirectly related to a legally required burden of persua-
sion, and its impact on Type II errors is not as simple as it
might seem initially.38 The following sections clarify these
relations, suggest a statistically valid method for address-
ing environmentalists’ concerns about Type II errors and
allocating the burden of proof, and examine the limits of
statistical inference and the Precautionary Principle in sci-
entific decisionmaking.

A. The Indirect Nature of Frequentist Statistical Inference

The frequentist definition of probability is central to under-
standing traditional methods of statistical significance test-
ing. Frequentists define probability as the “long-run fre-
quency” or propensity of a population, system, or thing.39

The properties that may be studied are almost infinitely vari-
able, limited only by imagination and what can be mea-
sured. The concept of long-run frequency has been aptly
characterized as “combin[ing] individual irregularity with
aggregate regularity,” such that measurement of a system’s
long-run frequency converges to a fixed value as the number
of observations increases.40 The long-run frequency of a fair
coin turning up heads, for example, converges to one-half as
the number of trials approaches infinity.41 Scientists thus
conduct repeated measurements of, i.e., sample, a popula-
tion to obtain an accurate measure of such long-run frequen-
cies. Statistical significance testing assesses the correspon-
dence of such statistical samples with hypotheses regarding
the true long-run population frequency being measured.

Statistical inference for frequentists revolves around de-
termining the degree to which an experimental sample sta-
tistic is approximated by a normal distribution model.42 For
example, suppose you believe the coin in your pocket is fair
and you want to test the validity of this starting hypothesis
by flipping the coin 1,000 times. For any fixed number of
observations, the normal distribution offers a simplified
model for the distribution between heads and tails, which in
this case predicts that there is about a two-thirds probability
of the number of heads lying between 495 and 505 and a
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ple who bear the risks (few versus many), and the types of risks (fi-
nancial versus physical and psychological) justify affording higher
protection to “potential victims.” Id.

30. Page, supra note 4, at 220.

31. See infra Part II.A.

32. Cranor, supra note 22, at 72, 79; Barrett & Raffensperger, supra note
22, at 117-18; Ashford, supra note 27, at 202-03; Mark Geistfeld,
Reconciling Cost-Benefit Analysis With the Principle That Safety
Matters More Than Money, 76 N.Y.U. L. Rev. 114, 118-19 (2001);
Michele Territo, The Precautionary Principle in Marine Fisheries
Conservation and the U.S. Sustainable Fisheries Act of 1996, 24 Vt.

L. Rev. 1351, 1351-52 (2000); Reed F. Noss, Symposium on Ecol-
ogy and the Law; Some Principles of Conservation Biology, as They
Apply to Environmental Law, 69 Chi.-Kent L. Rev. 893, 893
(1994); Kristin S. Shrader-Frechette & E.D. McCoy, Statistics,
Costs, and Rationality in Ecological Inference, 7 Trends in Ecol-

ogy and Evolution 96, 97 (1992); Randall M. Petterman & Mi-
chael M’Gonigle, Statistical Power Analysis and the Precautionary
Principle, 24 Marine Pollution Bull. 531, 531-33 (1992); Lene
Buhl-Mortensen, Type-II Statistical Errors in Environmental Sci-
ence and the Precautionary Principle, 32 Marine Pollution

Bull. 528, 529-31 (1996).

33. See, e.g., Cross, supra note 1, at 859-61.

34. Collins, supra note 9, at 339; Hacking, supra note 3, at 225.

35. Page, supra note 4, at 230-39.

36. David F. Parkhurst, Statistical Significance Tests: Equivalence and
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1051, 1057 (2001); see also Lawrence H. Lehman, The Fisher,
Neyman-Pearson Theories of Testing Hypotheses: One Theory or
Two?, 88 J. Am. Statistical Ass’n 1242, 1243 (1993).

37. See infra Part II.A. (Statistical testing thus involves a one-sided
competition between the null hypothesis and the conjecture that
turns on the fidelity of the null hypothesis model in matching the ex-
perimental data.).

38. See, e.g., George Casella & Roger L. Berger, Reconciling Bayesian
and Frequentist Evidence in the One-Side Testing Problem, 82 J.

Am. Statistical Ass’n 106 (1987) (with commentary); Morris H.
DeGroot, Doing What Comes Naturally: Interpreting a Tail Area as
a Posterior Probability or a Likelihood Ratio, 68 J. Am. Statisti-

cal Ass’n 966 (1973).

39. Hacking, supra note 11, at 1-2.

40. Id. at 5; Hacking, supra note 3, at 145, 190-91, 196-97.

41. Hacking, supra note 3, at ch. 3; Hacking, The Emergence of

Probability, supra note 11, at 214. Propensity theorists ignore
long-run frequencies, focusing instead on those attributes that cause
fixed frequencies. Hacking, supra note 3, at 145; Porter, supra
note 8, at 121-22. A die, for example, has symmetry properties that
dictate its probabilistic tendencies. According to this account,
probabilistic models, like abstract physical theories, embody math-
ematically specific properties of the systems or things they accu-
rately represent.

42. The “binomial distribution” is a mathematically precise representa-
tion of a coin tossing system; the normal distribution is a fair approx-
imation to the binomial distribution for tests involving at least 30 tri-
als, i.e., flips of the coin. Deborah G. Mayo, Error and the

Growth of Experimental Knowledge 171 (1996).
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0.95 probability of it lying between 490 and 510.43 The nor-
mal distribution in this case provides a mathematical ap-
proximation of experimental conditions in which variability
is purely random and the coin has an equal probability of ob-
taining a heads or tails (fairness) on each toss. If your experi-
mental result were 491 heads, you would be reasonably con-
fident in the fairness of the coin; conversely, if your experi-
mental result were 400 heads, you would likely question
your initial hypothesis about the coin’s fairness.44

Testing a pesticide’s toxicity provides a more informative
and realistic example of significance testing.45 The basic ap-
proach, however, is the same: just as a normal distribution
can be used to model the behavior of a fair coin, it may be
used as a model of experimental conditions limited by ran-
dom errors, which requires a carefully controlled testing re-
gime.46 Frequentists utilize the following convention for hy-
pothesis testing: (1) a “null” hypothesis, which assumes no
effect exists, i.e., the pesticide is harmless; and (2) a “con-
jecture,” which assumes some effect exists, i.e., the pesti-
cide has a discernable toxic effect.47 In this scheme, the null
hypothesis incorporates the normal distribution as a model
of the population, i.e., a human population insensitive to
pesticide exposure, that the experiment is sampling; the
experimental data are then compared against this popula-
tion model.48

The null hypothesis method leads to a counterintuitive re-
sult: the probability calculated is not the probability that the

pesticide is harmful, but rather the probability of obtaining
the experimental data assuming the null hypothesis is true.49

In the pesticide example, the incidences of harm observed
experimentally are compared against the likelihood of that
frequency of harm occurring if the pesticide had no effect.
As a result, a high probability of obtaining the experimental
results under the null hypothesis model of the experiment
implies “we cannot tell which hypothesis is correct”—a dif-
ferent, untested hypothesis could have a higher probability.
Conversely, a low probability indicates “the null hypothesis
seems likely to be false.”50 In either case, frequency-type
statistical testing does not provide a straightforward assess-
ment of the probability that the pesticide is harmful; it is in-
stead based on two measures of the null hypothesis model’s
error rates—significance and power.51

The principle that underlies this approach is simple:
“there should be very little chance of mistakenly rejecting
a true hypothesis . . . [and] a good chance of rejecting false
hypotheses.”52 The significance of a test is thus defined as
the probability of rejecting the null hypothesis when it is
true, i.e., a Type I error.53 Similarly, the power of a test is
defined as the probability of accepting the null hypothesis
when it is false, i.e., a Type II error.54 Following this prin-
ciple, the general rule is that experiments should have low
significance and high power.55 This rule is difficult to im-
plement for two reasons. First, it is often difficult to for-
mulate an appropriate measure for power, which leads in-
vestigators to ignore power altogether.56 Second, an in-
herent trade off exists between minimizing significance
and maximizing power—the basic mathematics makes it
impossible, as a general rule, to minimize them simulta-
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43. Hacking, supra note 3, at 203-04, 206.

44. The detailed analysis is actually a little more complicated. The as-
sumption that the coin is fair implies that an event of probability
much less than 1% would have occurred if you obtained 400 heads.
One does not, however, reject one theory in a vacuum, but only if a
better one exists. Hacking, The Emergence of Probability, su-
pra note 11, at 70-71, 79-81. If a statistical analysis reveals the
chance of the experimental results occurring is very small, say
0.0001, there are two possible inferences one can make. Id. at 65, 83.
One might attribute the low value to the observation theory, i.e., the
statistical and experimental methods; for example, the result could
imply that the flips of the coin in the preceding example were not in-
dependent. Id. at 83. Alternatively, one might attribute it to the ex-
planatory theory (the fairness of the coin) if independence is well
founded. In either case, a low statistical value merely shows that “if
there is any alternative hypothesis which will explain the occurrence
of the sample with a more reasonable probability, say 0.5 . . . you will
be very much more inclined to consider that the original hypothesis
is not true.” Id.

45. Hacking, supra note 3, at 213-15.

46. The experiment must be designed to ensure that the experimental ob-
servations are independent, i.e., each experimental test for toxicity is
independent of the others, and that systematic errors are minimized,
e.g., randomization, double-blind testing, etc. Mayo, supra note 42,
at 4-7, 12-13, 16-17.

47. Hacking, supra note 3, at 214. The relevant data for this test are
the incidences of harm, e.g., carcinogenesis, among individuals ex-
posed to the pesticide and among those not exposed, generally re-
ferred to as the control group. Under the null hypothesis, the two
populations (exposed and unexposed) are assumed to have equal in-
cidences of harm.

48. Id.; Collins, supra note 9, at 335. The null hypothesis is a matter or
faith, not of logic or science, and thus is not an ultimate criterion of
truth because “[t]here is no way to test a statistical model statisti-
cally . . . . [such an effort] leads only to logical regress.” Id. at 336.
Moreover, while it makes sense that disparate causal chains should
be treated as completely independent, many gradations exist in be-
tween. As John Keynes observed: “A remote connection or a reac-
tion quantitatively small is a matter of degree and not by any means
the same thing as absolute independence.” John M. Keynes, A

Treatise on Probability 283 (1921). Other theorists have ac-
knowledged the importance of “non-normal” distributions, particu-
larly in heterogeneous systems, but these efforts have been largely
ignored. Porter, supra note 8, at 264-65, 307-10.

49. Hacking, supra note 3, at 214-15. In a 1986 article, Prof. David H.
Kaye provides a very clear exposition of the confusion that often
arises in the context of legal actions over the meaning of statistical
significance. Kaye, supra note 22.

50. Parkhurst, supra note 36, at 1057. Stated otherwise, the statistical
testing of the null hypothesis model asks the question: “Do we lack
evidence that the [pesticide] is not safe . . . ?” Id. at 1052. Accord-
ingly, interpreting failure to reject the null hypothesis as proof of its
validity is the “equivalent of failing to find a pair of pliers in a quick
search of a messy garage and claiming that failure to be good evi-
dence that the pliers were not there.” Id. at 1053.

51. Hacking, supra note 3, at 211-15, 223-25.

52. Hacking, The Emergence of Probability, supra note 11, at 92
(this approach is referred to as the “Neyman-Pearson” theory, as it
was first developed by Jerzey Neyman and Egon S. Pearson).

53. Hacking, The Emergence of Probability, supra note 11, at 92;
Hacking, supra note 3, at 212-13, 223-25.

54. Hacking, supra note 3, at 224-25.

55. Hacking, The Emergence of Probability, supra note 11, at 92;
Hacking, supra note 3, at 225.

56. McBride, supra note 7, at 19; Hacking, supra note 3, at 224-25;
Lehman, supra note 36, at 1244-45 (1993). If we return to the pesti-
cide example, delimiting the potential alternative hypothes[es] is far
from straightforward. The alternative to “harmless” is not “harm-
ful,” it is actually a host of alternatives hypotheses (and degrees of
potency) that entail some kind of harmful interaction. These prob-
lems arise for the same reason that scientific inference generally is
difficult: it is impossible to rule out all possible alternative hypothe-
ses. R. Lewin, Santa Rosalia Was a Goat, 221 Science 636, 639
(1983) (example of poor information and theory for development of
alternatives to the null hypothesis model in ecological science). Nev-
ertheless, in certain well-defined experiments these indeterminacies
can be minimized, and the power of an experiment may be reduced to
a relatively simple function of the sample size. M.O. Finkelstein &

B. Levin, Statistics for Lawyers 182-88 (2d ed., 2001); Brian
Dennis, Should Ecologists Become Bayesians?, 6 Ecological Ap-

plications 1101 (1996).
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neously.57 The term “significance test” is not arbitrary in
this respect; it implies that traditional frequentist testing fo-
cuses on statistical significance, not power.

Statisticians have responded to these constraints by
adopting a convention: they minimize only Type I errors
and, where possible, formulate a null hypothesis for which
Type I errors are the more serious ones.58 In practice, how-
ever, the starting hypothesis in a significance test is by de-
fault a no-effect null hypothesis, meaning that the Type I er-
ror being minimized in most statistical tests is identifying a
risk where none exists—not failing to discover a risk that is
real. Following this convention, statistical tests are charac-
terized by their “significance level,” i.e., Type I error rate,
such that a test is “significant at the one-percent level” when
the null hypothesis model of the experiment predicts there is
a 1% chance of observing the experimental result.59 More
concretely, if a pesticide were, in fact, not harmful there
would be only a 1% chance of observing the relative in-
crease in incidences of harm observed experimentally. Sig-
nificance levels are typically either 0.05 (95%) or 0.01
(99%) but, as suggested above, these standard levels are
neither driven by principle nor logical necessity.60 To the
contrary, they represent an arbitrary rule established by
convention that early on was likely dictated by mathemati-
cal simplicity.61

Environmentalists’ focus on Type I and II error rates be-
cause the no-effect null hypotheses used almost universally
in significance testing are contrary to the Precautionary
Principle. In the pesticide example, for instance, the starting
hypothesis was that the pesticide was harmless. This formu-
lation fails to minimize the errors of greater concern to envi-
ronmentalists, i.e., failing to regulate when the pesticide is
in fact harmful, because they are treated as Type II errors.

Environmentalists argue that asymmetries in the severity of
Type I and II errors can be corrected by relaxing a statistical
test’s significance level, which they believe shifts the pre-
sumption away from the null hypothesis and, in effect, low-
ers the burden of persuasion for finding harm.62 This rea-
soning illustrates two important misconceptions about fre-
quentist methods. First, it conflates the frequentist and
Bayesian theories by interpreting the indirect statistical er-
ror rates of frequentist significance testing as Bayesian de-
gree-of-belief probability.63 Second, it presumes that a sim-
ple relation exists between Type I and II errors.

Frequentist methods, as described above, employ null hy-
pothesis error rates, not standards of proof. Thus, the proper
interpretation of a significance test with a 95% significance
level is not that failing the test, i.e., being statistically signif-
icant, means the null hypothesis has a 95% chance of being
false. Instead, meeting this error rate means that the null hy-
pothesis model has less than a 5% chance of generating the
observed data. In the pesticide example, the fact that the null
hypothesis has a low probability of predicting the experi-
mental results does not preclude it from being the most
likely hypothesis—the experimental results could simply
represent a rare event.64 Interpreting frequentist signifi-
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57. Hacking, supra note 3, at 224-25; Hacking, The Emergence of

Probability, supra note 11, at 92-93. The reason for this trade off
becomes apparent if one considers the extreme cases of obtaining
zero Type I or II error. If Type I errors were set at zero, the test would
effectively reject the null hypothesis all the time, causing Type II er-
rors to increase substantially, and an analogous increase in Type I er-
rors would occur if Type II errors were set a zero. In between these
extremes, a trade off exists between the two types of errors and no
general method exists for simultaneously minimizing them. Id.

58. Jerzey Neyman, First Course in Probability and Statistics

261-64 (1950); Mayo, supra note 42, at 372-74.

59. Hacking, supra note 3, at 212. As such, “a hypothesis or signifi-
cance test determines whether an observed result is so unlikely to
have occurred by chance alone that it is reasonable to attribute the re-
sult to something else.” Kaye, supra note 22, at 1333. More pre-
cisely, a 1% significance level means the following: “If a designated
null hypothesis is true, then, using a certain statistic that summarizes
information from an experiment like ours, the probability of obtain-
ing the data that we obtained, or less probable data, is 0.01.”
Hacking, supra note 3, at 215. In the absence of a conjectured theo-
retical model, significance testing takes on a mindless quality be-
cause it amounts merely to finding that “[e]ither the null hypothesis
[ ] is true, in which case something unusual has happened by chance
(probability 1%), or the null hypothesis [ ] is false.” Id. at 243.

60. Hacking, supra note 3, at 216-18. “Confidence limits,” which are
related to significance but used for point estimates, often also em-
ploy 95% or 99% limits by convention. A “confidence limit” of 95%
represents the following: the point estimate with which it is associ-
ated was made using a procedure that gives a correct estimate 95% of
the time. Id. at 234-36, 240-41.

61. Collins, supra note 9, at 337, 339; Lehman, supra note 36, at 1244;
Kaye, supra note 22, at 1343-45. The choice of 0.05 and 0.01 is at
least partly a “mathematical accident” based on the normal distribu-
tion, for which “it is unusually easy to compute the 99% and 95% ac-
curacy probabilities for some phenomena.” Hacking, supra note 3,
at 217.

62. See supra note 32. For lawyers, the logic of this position appears
self-evident, especially in light of long-standing U.S. Supreme
Court jurisprudence on burdens of persuasion. A good example of
this is Justice John Harlan’s opinion in the In re Winship case:

The standard of proof influences the relative frequency of
these two types of erroneous outcomes. If, for example, the
standard of proof for a criminal trial were a preponderance of
the evidence rather than proof beyond a reasonable doubt,
there would be a smaller risk of factual errors that result in free-
ing guilty persons, but far greater risk of factual errors that re-
sult in convicting the innocent. Because the standard of proof
affects the comparative frequency of these two types of erro-
neous outcomes, the choice of the standard to be applied in a
particular kind of litigation should, in a rational world, reflect
an assessment of the comparative social disutility of each.

397 U.S. 358, 271 (1970); see also David H. Kaye, Statistical Signif-
icance and the Burden of Persuasion, Law & Contemp. Probs.,
Autumn 1983, at 13, 14-17. The U.S. Court of Appeals for the Dis-
trict of Columbia (D.C.) Circuit makes a similarly erroneous obser-
vation in Ethyl Corp. v. EPA, 541 F.2d 1, 6 ELR 20267 (D.C. Cir.
1976), when it interprets a 95% confidence level as implying that a
“scientific fact is at least 95% certain.” In both cases, the courts are
confusing legal burdens of persuasion and frequentist error rates.

63. Kaye, Statistical Significance, supra note 62, at 57 (The “unholy un-
ion” of frequency- and belief-type theories of probability leads to in-
coherence and “yields arbitrary and unjustifiable results.”). “The
burden of persuasion[, i.e., degree of reasonable belief,] is . . . not the
likelihood that the effect found was due to random error. Using sta-
tistical significance as the equivalent of the burden of persuasion is,
as David Kaye has trenchantly stated, like ‘trying to find the shortest
path from Oxford to Cambridge by scrutinizing a map of London.’”
Michael D. Green, Expert Witnesses and Sufficiency of Evidence in
Toxic Substances Litigation: The Legacy of Agent and Bendectin
Litigation, 86 Nw. U. L. Rev. 643, 649-53 (1992). See also Kaye,
Statistical Significance, supra note 62, at 21-23; David H. Kaye, Ap-
ples and Oranges: Confidence Coefficients and the Burden of Per-
suasion, 73 Cornell L. Rev. 54 (1987). Numerous examples of
this confusion exist. See, e.g., K.S. Shrader-Frechette, Risk

and Rationality: Philosophical Foundations for Populist

Reforms 132-34 (1991); Raffensperger & Tickner, supra note 22,
at 3; Cranor, supra note 22, at 79; Barrett & Raffensperger, supra
note 22, at 111-12.

64. The fact that a hypothesis explains observed data well does not nec-
essarily imply that it is the most probable account. An exceedingly
rare genetic disorder might be consistent with certain observed
symptoms, but if the symptoms also were reasonably consistent with
a very common virus, a doctor will choose the latter in her diagnosis
of the patient because it is so much more likely to occur. Similarly,
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cance levels as quantifying the degree of support for a hy-
pothesis is equivalent to concluding that where A implies B
it necessarily follows that B implies A. Significance tests
quantify how likely a test hypothesis is to predict the ob-
served data; they do not quantify how well the observed data
support a test hypothesis. Only under certain limited cir-
cumstances may frequentist null hypothesis error rates be
quantifiably related to a burden of persuasion and, even
where they can, the relationship is not a simple one in which
unique rates of Type I and II errors correspond to a specific
burden of persuasion.65 Typically, frequentist error rates
will change from experiment to experiment for a given bur-
den of persuasion.66

The effect of varying Type I and II errors must be care-
fully considered for several additional reasons. First, argu-
ments regarding statistical error rates generally devolve into
a rejection of conventional significance levels with little or
no consideration for how Type II errors are affected. While it
is true that increasing the significance level of a test lowers
Type II errors, a simple one-to-one relationship does not ex-
ist between them.67 The relationship between the two types
of errors is complicated by the fact that Type II error is deter-
mined by several other independent factors, such as the size
of the data set and the background incidence of the phenom-
ena being studied.68 Second, indiscriminately raising the
significance level of an experiment can lead to perverse re-
sults: increased total experimental error, i.e., combined
Type I and II errors, with only a marginal decrease in Type II
errors.69 In such cases, statistical reliability is sacrificed
without environmental concerns necessarily benefitting
from a more rigorous vetting of the data.70 Precautionary

Principle proponents must thus be careful in how they relate
significance levels to legal burdens of persuasion and how
they seek to balance perceived asymmetries between Type I
and II errors in a regulatory context. It is essential to under-
stand that frequentist methods test hypotheses stringently;
they do not quantify their probability of being true directly.
For frequentists, confidence in a hypothesis instead accrues
qualitatively through a hypothesis satisfying multiple tests.

B. Equivalence Testing as a Response to the
Precautionary Principle

The Precautionary Principle has undeniably helped to ex-
pose the systemic bias in traditional significance testing
methods, which employ, generally by default, a no-effect
null hypotheses. While one can disagree in specific cases
whether an asymmetry exists between underregulation and
overregulation, few people would deny that in some situa-
tions underregulation poses the more serious risk of harm.
Fortunately, the apparent bias of frequentist methods is
neither necessary nor, as a historical matter, consistent
with how significance testing was originally conceived.
The statistician Jerzy Neyman, one of the codevelopers of
modern significance testing, addressed the importance and
meaning of Type I and II errors in his 1950 introductory
text on statistics:

It is essential to notice there are two different kinds of er-
ror possible. The adoption of [the null] hypothesis H
when it is false is an error qualitatively different from the
error consisting of rejecting H when it is true. This dis-
tinction is very important because, with rare exceptions,
the importance of the two errors is different, and this dif-
ference must be taken into consideration when selecting
the appropriate test . . . .
. . . .
As already mentioned, the situation where the conse-
quences of the two kinds of errors are of unequal impor-
tance is of a very general occurrence. It is true that in
many cases the relative importance of the errors is a sub-
jective matter . . . . However, this subjective element lies
outside of the theory of statistics. The essential point to
notice is that, in most cases, the person applying a test of
a statistical hypothesis considers one of the possible er-
rors more important to avoid than the other . . . .
. . . .
Postulating this to be the ordinary case we will use the
expression error of the first kind[, i.e., Type I error,] to
describe that particular error in testing hypotheses which
is considered more important to avoid. The less impor-
tant error will be called the error of the second kind[, i.e.,
Type II error,] . . . .
. . . .
This convention of labeling the two kinds of error is sup-
plemented by a parallel convention concerning the use
of the term hypothesis tested. Let H be a statistical hy-
pothesis and H its negation. The term hypothesis tested
is attached to H or to H in such a way that the rejection
of the hypothesis tested when it is true is an error of the
first kind . . . .71

Neyman carefully distinguished Type I and II errors be-
cause, as discussed above, they cannot be jointly mini-
mized. Accordingly, a judgment must be made regarding
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the fact that a hypothesis is only marginally consistent with experi-
mental results does not necessarily imply that it is not the most prob-
able explanation. This is no different than if you were to role double
sixes five times consecutively in a game of backgammon. The likeli-
hood of this occurring with fair dice is exceedingly low, but if you
have no other reasons to believe that the dice are fixed, you could
reasonably conclude that a remarkably rare event just occurred
rather than that the dice are unfair. These examples involve what are
often referred to as “base-rate” problems.

65. See Kaye, supra note 22, at 1355-56, 1362-63. Moreover, where
multiple hypotheses are at issue, other analytical problems may
arise. See David H. Kaye, The Limits of the Preponderance of the Ev-
idence Standard: Justifiably Naked Statistical Evidence and Multi-
ple Causation, 1982 Am. Bar Found. Res. J. 487, 508-13 (1982).

66. Kaye, Apples and Oranges, supra note 63, at 71-73; Kaye, Statisti-
cal Significance, supra note 22, at 1721-23; M. DeGroot, Proba-

bility and Statistics 373-82 (1975).

67. Green, supra note 63, at 684-85; DeGroot, supra note 66, at
275-78. A large increase in significance level, for example, may not
have a marked effect on an experiment’s power and, within a certain
range, may have little effect at all. Id.

68. Green, supra note 63, at 684-85. As a general rule, experiments con-
taining larger statistical samples and studying phenomena with low
background rates, or significant impacts, will have lower Type II er-
ror rates. A scientist, for example, studying breast cancer deaths as-
sociated with an industrial chemical drawing on a patient population
of 10,000 individuals will be in a much better position to discern an
effect than a scientist studying mild cognitive impairments from lead
exposure with a patient population of 100 individuals.

69. Id. at 687-89; Kaye, Apples and Oranges, supra note 63, at 66-73.

70. The challenges of controlling statistical power are demonstrated by
scientists’ recent efforts to refocus attention on statistical power by
undertaking post hoc power analyses, under which statistical power
is calculated using the experimental data as an alternative to directly
improving the statistical power of their experiments. While well in-
tentioned, this approach is analytically flawed and logically incon-
sistent for reasons related to the interpretive problems discussed
here. See John M. Hoenig & Dennis M. Heisey, The Abuse of Power:

The Pervasive Fallacy of Power Calculations for Data Analysis, 55
Am. Statistician 19, 19-21 (2001).

71. Neyman, supra note 58, at 261-64 (emphasis in original).
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the appropriate trade off between the two types of error.72 In
significance testing, as Neyman indicates, Type I errors are
minimized first, that is they are given priority. Neyman also
made it clear, however, that the hypothesis tested and Type I
error are connected—minimizing the more important error
requires that the appropriate hypothesis be tested.

Addressing Type II errors in environmental science there-
fore also entails formulating an appropriate null hypothesis
to test.73 In the standard significance tests, the null hypothe-
sis is either that no effect exists or that an effect does not ex-
ceed a specific level, such as a regulatory limit.74 In these
cases, the null hypothesis model is constructed by position-
ing a normal distribution at the value in question, i.e., zero or
some other number. The Type I error then is the error of ob-
taining a positive result that is false, e.g., regulating a chemi-
cal that is nontoxic. which will result in the less important
type of error being minimized if one either accepts the Pre-
cautionary Principle generally or believes in the specific in-
stance that underregulation poses greater risks.75

The bias of conventional frequentist significance testing
is compounded by the common interpretive mistakes dis-
cussed earlier. Recall that significance testing supports one
of two conclusions: either (1) the null hypothesis is false or
(2) the null hypothesis is not inconsistent with observed ex-
perimental data—from which one generally cannot con-
clude that the null hypothesis is true.76 Nevertheless, many
people assume that failure to falsify the null hypothesis, i.e.,
lack of statistical significance, implies that no effect ex-
ists.77 This interpretive error, in effect, places the burden of
proof on anyone wishing to refute the null hypothesis.

Equivalence testing uses a null hypothesis that resolves
both of these problems.78 The typical null hypothesis model
of an experiment, as discussed above, is based on a point es-
timate. Equivalence tests replace the point estimate with an
interval. A zero-valued point estimate, for example, would
be replaced by an interval of, say, magnitude 0.01, which
would range from 0.00 to 0.01.79 Just like a point estimate,
an equivalence interval also can be used for non-zero values,
either bracketing them, ±0.05, or extending to one side, x +
0.01. The null hypothesis for an equivalence test is not “the
chemical is toxic,” it is “the chemical’s toxicity is equal to or
greater than x,” where the interval is 0 to x and the value x is

presumably set by a regulatory entity.80 The conjectured
hypothesis is “the chemical’s toxicity is less than x.”81 Be-
cause the null hypothesis assumes the chemical is harmful,
equivalence tests minimize the “more important” error,
which here is the error of declaring the chemical harmless
when its toxicity is beyond the regulatory interval, i.e., er-
roneously determining the chemical should not be regu-
lated.82 Similarly, the interpretive mistakes discussed
above err in favor of protecting the environment and hu-
man health, which in this case is presumptively the more
important direction to err.

An additional virtue of equivalence testing is that it is a
well-established statistical method under governing Food
and Drug Administration (FDA) regulations.83 Consistent
with Neyman’s reasoning, FDA requires equivalence test-
ing to ensure that the risk of allowing a harmful drug to be
sold is minimized, i.e., the more serious error is controlled.
Accordingly, given that FDA is one of the most highly re-
garded and scientifically sophisticated federal agencies,
equivalence testing should not raise problems from either a
scientific or regulatory standpoint. Moreover, while it is
somewhat surprising that equivalence testing has not been
used beyond the FDA, it does not derive from inherent limi-
tations of the methodology, which could be applied in a
broad range of environmental sciences.84 Instead, it is likely
that the arcane nature of statistical methods and general ig-
norance about them simply obscured the relevance of equiv-
alence testing to other legal and regulatory areas.85

Despite these important virtues, some environmentalists
may nevertheless object to the use of equivalence inter-
vals.86 Specifically, the interval from 0 to x described in the
example above is, in effect, an interval in which the chemi-
cal’s (non-zero) toxicity is determined to be de minimis.87 If
the toxicity of the chemical falls entirely within the equiva-
lence interval, the null hypothesis for the equivalence test,
i.e., that the chemical’s toxicity is equal to or greater than x,
is likely false and the chemical will be considered safe; oth-
erwise, the test is inconclusive and the presumption remains
that the chemical is harmful. The problem raised by the
equivalence interval is that—like the convention of using a
5% significance level—no objective basis exists for deter-
mining its magnitude.88 The size of the interval would pre-
sumably be set by the relevant agency, which is the current
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72. See supra Part II.A.

73. Philip M. Dixon, Assessing Effect and No Effect With Equivalence
Tests, in Risk Assessment: Logic and Measurement 276 (Mi-
chael C. Newman & Carl L. Strojan eds., 1998).

74. It is important to recognize that shifting the starting hypothesis to a
non-zero value, such that some degree of harm is assumed at the out-
set, does not get you very far. In such cases, the test minimizes the er-
ror associated with, for example, finding the chemical does not have
the specific non-zero value when in fact it does—the error mini-
mized remains regulating when the non-zero harm does not actually
exist, not failing to regulate when the chemical is harmful. If there is
significant uncertainty about what the actual level is, minimizing the
error associated with a discrete non-zero value is not terribly effec-
tive. To be effective, the null hypothesis needs to encompass a range
of values all at once.

75. Neyman, supra note 58, at 261-64; Page, supra note 4, at 231-33.

76. See supra Part II.A.; Dixon, supra note 73, at 275-76.

77. Parkhurst, supra note 36, at 1053, 1055.

78. McBride, supra note 7, at 20-21; Parkhurst, supra note 36, at
1053-54; Berger & Hsu, supra note 7, at 283-84. The test described
here is also sometimes referred to as a “reverse equivalence test.”
Parkhurst, supra note 36, at 1054-56.

79. McBride, supra note 7, 20-21; Dixon, supra note 73, at 276-77.

80. Parkhurst, supra note 36, at 1054; Berger & Hsu, supra note 7, at
283-84. The example is admittedly oversimplified insofar as it sug-
gests that toxicity can be measured on a single metric. These com-
plexities are not relevant here, as the central point of the example
is independent of considerations about processes for quantifying
the data.

81. Id.

82. Id.

83. Id.; Dixon, supra note 73, at 279. FDA requires generic drug manu-
factures to use equivalence testing to determine whether a generic
drug is bioequivalent to an existing brand-name drug. See, e.g.,
FDA, Bioavailability and Bioequivalence Requirements, 21 C.F.R.
320 (2002).

84. Dixon, supra note 73, at 279; McBride, supra note 7, at 19-20, 23;
Parkhurst, supra note 36, at 1054-56.

85. See, e.g., Hoenig & Heisey, supra note 70, at 23; Parkhurst, supra
note 36, at 1056-57.

86. Dixon, supra note 73, at 279 (“All equivalence tests force the user to
specify some region of equivalence before the data are analyzed.”).

87. McBride, supra note 7, at 21-26; Parkhurst, supra note 36, at 1054.

88. Dixon, supra note 73, at 279; Parkhurst, supra note 36, at 1054.
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practice at FDA.89 For some environmentalists, the specter
of allowing federal agencies to establish a priori de minimis
levels for industrial chemicals will be grounds for rejecting
the method, as de minimis levels are contrary to the chemi-
cal risk models environmentalists advocate.90

Such opposition would not be warranted. First, the signif-
icance levels of traditional frequentist tests raise precisely
the same problem, just less transparently. In fact, many peo-
ple consider statistical significance levels to be defined ob-
jectively when they are set by convention. An equivalence
interval, in contrast, would be established up front as a mat-
ter of agency policy, not under the guise of arcane statistical
rules as significance levels are.91 Second, and more impor-
tantly, traditional significance testing methods lack the ben-
efit derived from shifting the de facto burden of proof to the
regulated entity and minimizing the more environmentally
significant type of error. Equivalence testing both rectifies
the systemic bias in traditional significance testing while at
the same time making the judgments and conventions in sig-
nificance testing more transparent.92

Decisions regarding the use of equivalence tests over tra-
ditional methods will, in any event, remain contentious if
the long-standing battle over the Precautionary Principle is
at all representative. One can only hope that the added flexi-
bility equivalence testing offers will allow this debate to
evolve, as it will afford direct comparisons between tradi-
tional methods and a statistically valid alternative that is
consistent with the Precautionary Principle.

C. The Limits of Frequentist Methods and the
Precautionary Principle

Equivalence testing is ultimately only a partial response to
the dictates of the Precautionary Principle. Frequentist
methods support inferences from discrete scientific studies
and are thus of limited value to integrated scientific determi-
nations.93 Consider an example in which the results of two
experiments on a chemical’s toxicity both satisfy a 95% sig-
nificance level, but their estimates of its toxicity differ
markedly. Assume further that one of the experiments in-
volved dosing rats under controlled conditions, while the
other was a human epidemiological study for which expo-
sure levels could not be controlled as stringently. These ex-
perimental differences prove critical because the data are
not directly comparable, i.e., they are not commensurable.
Statistical significance will be irrelevant to how a scientist
weighs the credibility of the two studies and integrates their
results to estimate the chemical’s toxicity. To make an inte-
grated determination, a scientist undertakes a qualitative as-
sessment of how well each experiment was designed and
implemented.94 Accordingly, while statistical significance

serves an important purpose, its role in rigorously testing
hypotheses, i.e., gatekeeper, is removed from final scien-
tific judgments of most relevance for regulatory purposes.95

This simplified example is directly applicable to the U.S.
Environmental Protection Agency’s (EPA’s) process for set-
ting chemical toxicity levels under its Integrated Risk Infor-
mation System (IRIS) program.96 IRIS toxicological re-
views are designed to generate a consensus opinion on the
potency of the toxic chemicals EPA regulates. The IRIS pro-
cess assesses all of the available toxicological studies per-
formed on a chemical.97 When integrating the available data
to arrive at a consensus opinion, scientists consider a variety
of experimental factors, such as whether the data are derived
from animal or human studies, the degree to which the con-
ditions for the experiments were controlled, assumptions
made to determine exposure levels, and any confounding
exposures that could bias the results.98 Statistical signifi-
cance is independent of these considerations—even poorly
crafted or weak experiments can generate statistically sig-
nificant results. Thus, while a lower level of statistical sig-
nificance may permit scientists to consider more data, it pro-
vides no guidance on the more important judgment of how
the data are assessed relative to each other or as a whole.99

This point is critical because scientific judgments on the
value of specific experimental results “count most, not some
meeting of, or failure to meet, an arbitrary level of statisti-
cal ‘significance.’”100

The Precautionary Principle clearly is not limited to in-
ferences from discrete experiments or interpreted solely in
terms of relative error rates and frequentist significance test-
ing. Although it is often described in frequentist terms, the
Precautionary Principle is targeted at scientific methods
generally.101 Indeed, advocates of the Precautionary Princi-
ple consider its singular virtue to be that it is “imperfectly
translatable into codes of conduct,” and thus is resistant to
expert co-option.102 Formulated in this manner, however,
the Precautionary Principle risks compromising legal and
scientific procedures by treating obscurantism as a virtue
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necessary to counteract expert authority. The underlying
premise is a familiar one, namely, that all “research priori-
ties, data, and conclusions are shaped by social contexts
and values.”103 In short, because environmental science is
qualified by uncertainties and thus subject to value judg-
ments, the Precautionary Principle should direct all scien-
tific determinations.104

Probably the most common criticism of the Precaution-
ary Principle is that it risks advancing a model for scientific
inference that lacks both objective measures and quantita-
tive clarity.105 This vagueness is not, however, unique to the
Precautionary Principle, but instead is a general feature of
efforts to formulate interpretive principles based on broad
fundamental principles or rights.106 Among conservative or
procedurally oriented legal scholars, reliance on fundamen-
tal rights, e.g., privacy, equality, for purposes of judicial re-
view exemplifies this kind of approach.107 Objections to the
Precautionary Principle do not differ in substance from
those raised in the judicial context: the Precautionary Princi-
ple is used to guide scientific judgment just as fundamental
rights are used to resolve interpretive ambiguities in the con-
stitution and to guide judicial review generally.108

The deficiencies of a rights-based, or natural law, ap-
proach to judicial review have been enumerated many
times. John Hart Ely provides one of the most deft and
clear critiques:

[T]he only propositions with a prayer of passing them-
selves off as “natural law” are those so uselessly vague
that no one will notice—something along the “No one
should needlessly inflict suffering” line. “[A]ll the many
attempts to build moral and political doctrine upon the
conception of a universal human nature have failed.
They are too few and abstract to give content to the idea
of the good, or they are too numerous and concrete to be
truly universal. One has to choose between triviality
and implausibility.”109

The same uncertainties arise with the Precautionary Princi-
ple: “While it is applauded as a ‘good thing,’ no one is quite
sure about what it really means or how it might be imple-
mented.”110 The challenges of applying the Precautionary
Principle are in fact potentially more acute, as environmen-
tal policymaking is already rendered difficult by the techni-
cal nature of the underlying scientific determinations.
Moreover, insofar as proponents of the Precautionary Prin-
ciple accept as dogma that science is unavoidably infused
with value judgments, the potential for science to resolve
uncertainties will be undervalued or ignored.111

The problem with this critique is that it also applies to sci-
ence. As Thomas Kuhn, and others, have shown, science
consists of a mix of rigorous techniques and broad princi-
ples. Kuhn referred to the balance between them as “the es-
sential tension” in good science.112 These broad scientific
principles, e.g., simplicity, consistency, and breadth, are not
demonstrably more or less vague than the Precautionary
Principle. Scientists, for example, seek to elaborate theories
that are both internally consistent and consistent with exist-
ing data, but this ideal is fraught with uncertainties and ad
hoc qualifications because no scientific theory is ever with-
out contrary data.113 Consistency thus becomes a matter of
degree, but developing a coherent measure is complicated
by the fact that competing theories will be consistent with
different data. The different empirical support for compet-
ing theories makes it far more difficult to ascertain which of
them is the “more consistent” because one ends up having to
make judgments that amount to comparing apples and or-
anges. Objecting to the Precautionary Principle because of
its vagueness is therefore self-defeating, for it implicitly
condemns established scientific principles as well.

The basic sentiment behind the Precautionary Princi-
ple—consideration of the nature, uncertainties, and poten-
tial magnitude of the risks implicated in a scientific analy-
sis—is not inherently anti-scientific. Established scientific
methods like statistical significance (and equivalence) test-
ing, for example, contemplate a precautionary approach that
considers the risks at issue in an experimental study.114

Many advocates of the Precautionary Principle, however,
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have much more grandiose objectives, such as curing sci-
ence of its reductionist bias and democratizing how science
is practiced.115 Indeed, some “strong conceptions” of the
Precautionary Principle restrict scientists to “a very limited
role in decisionmaking.”116 These stronger versions of the
Precautionary Principle raise more difficult questions inso-
far as they propose radical departures from existing scien-
tific methods and processes. The heavy ideological baggage
that often attends the Precautionary Principle provides fur-
ther grounds for being circumspect.117 As in the balancing of
scientific and political processes generally, important trade
offs exist between maintaining the integrity of environmen-
tal science and addressing the objectives of these stronger
versions of the Precautionary Principle.118

The Precautionary Principle is a prominent example of
how the public, lawyers, and scientists are struggling to de-
fine the appropriate scope of their respective roles in envi-
ronmental policymaking. This section has discussed some
of the limits of scientific methods by exploring important
systemic biases and interpretive constraints found in
frequentist statistical methods. I have proposed equivalence
testing as a technical response to the bias of traditional
frequentist methods, but it cannot address the broader judg-
ments that ultimately must be made. Because significance
testing does not quantify directly the probability that a hy-
pothesis is valid, qualitative judgments—not quantitative
assessments—of the support for a hypothesis must be made
following a finding of statistical significance. The need for,
and difficulty of making, these qualitative judgments is
central to the debate over the proper role of science in regu-
latory decisionmaking.

III. Conclusion

This Article has examined the role of frequentist statistical
methods in environmental science and several common
misconceptions about them. In the end, the statistical tests
prove to be both more flexible in their application and
more limited in their influence on scientific determinations
than their skeptics appreciate. I propose a remarkably un-
derutilized method, equivalence testing, to address the be-
nign-until-proven-guilty bias of frequentist methods. While
it retains the interpretive limitations of frequentist meth-
ods generally, its other advantages ought to make equiva-
lence testing a standard technique in environmental regula-
tory science.
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